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ABSTRACT
Vibration transmissibility express the output

to input vibration relationship of a vibrating sys-
tem. It is normally used in vibration isolation
studies where the formulation for an one degree-
of-freedom system (1-DOF) is generally em-
ployed. Nevertheless, transmissibility should not
be limited to isolator studies and it may be neces-
sary to quantify transmissibility between two spe-
cific points of interest when there is a continuous
system between them. There is few or almost
none literature explaining how to measure trans-
missibility. Frequency Response Function be-
tween the output and input of the system is nor-
mally used. However, no mention is made to what
type of signal processing is performed to obtain
such a function. Depending on the signal proc-
essing used, completely different results are ob-
tained. To show that is exactly the main objective
of this paper. Several types of functions were
tested and the results are shown with the respec-
tive comments and considerations.

NOMENCLATURE
          = complex conjugate of a function
BW = window bandwidth
crtn = correction factor
Cspecx,y = cross spectrum between points x and y
FFT = Fast Fourier Transform
FRF = Frequency Response Function
Lspecy = linear spectrum of point y
N = number of averages used
Pspecy = power spectrum of point y
r = frequency ratio (ω/ωn)
sum = sum of values
Trx,y = Transmissibility Function between

points x and y
Wtime = widowed time
x = measurement point x

* = multiplication
X = Response Function at point x (freq.)
Xavg = exponential averaged value
y = measurement point y
Y = Response Function at point y (freq.)
n = number of the measurement
ω = Forcing (or excitation) frequency
ωn = natural frequency of the isolator
ζ = viscous damping ratio

1. INTRODUCTION
Vibration isolation is the amount of vibration

that is not transmitted to other components.
Therefore, isolation is directly related to transmis-
sibility studies. Although there is a lot of litera-
ture related to its formulation, there is few related
to its measurement.

According to reference [10], isolation systems
are comprised by three subsystems: the object to
be isolated, the supporting structure (floor, foun-
dation), and the vibration isolators (mounts)
placed between them. Depending on the situation,
it may be necessary to isolate the object from the
supporting structure or the supporting structure
from the object. The formulation used for both
situations is the same. Although each of the sub-
systems mentioned represents a multi-degree-of-
freedom, in fact, only the lowest structural modes
of the object and the supporting structure are
critical for the effectiveness of the isolator and so,
they can be considered to be ideal rigid bodies.
Moreover, usually the mounts’ mass are small
compared to the mass of the object and so, the
isolator can be considered a massless spring [10].

The transmissibility formulation used in isola-
tion studies is normally the one developed for a 1-
DOF system. However, it may be necessary to
obtain transmissibility when there is more than
one degree-of-freedom involved. The literature
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found for this case is mainly that related to ODS
(Operational Deflection Shape) studies, which
needs the measurement of the operating accelera-
tion at a series of points relative to the accelera-
tion at a reference point [4, 6]. That can be con-
sidered also to be a transmissibility. The point
here is that, although some of these studies men-
tion some signal processing aspects involved,
they do not point out what will be the conse-
quences of an improper choice of it.

2. TRANSMISSIBILITY

2.1 Transmissibility Formulation
As mentioned, transmissibility is the relation-

ship between the output to input responses of a
vibration system, as follows:
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In equation (1), relationship X/Y is normally
used when the source of vibration is the founda-
tion and relationship FT/F0 is used when the
source of vibration is the machine (or object).

The 1-DOF theory assumes that the only natu-
ral frequency present is the one related to the iso-
lator, since the machine and the foundation, as
mentioned previously, are considered as rigid
bodies and the isolator is assumed massless [1].

The absolute transmissibility for a 1-DOF
system with viscous damping can be calculated as
[1, 9]:
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Figure 1 – Transmissibility for a 1-DOF system
with viscous damper [9]

Figure 1 shows a graphical representation of
equation (2). By calling the relationship ω/ωn = r,
it is possible to observe that transmissibility
reaches its maximum value at r = 1. In the region
where 0 < ω  < 2ωn vibration is amplified,
whereas in the region ω  > 2ωn, vibration is at-
tenuated (or isolated). It can be noticed by ana-
lysing equation (2) and Figure 1 that the transmis-
sibility value is very much influenced by the
amount of viscous damping present in the system.
The increase of damping have different effects
according to the region under consideration.

When one is designing an isolator, ω needs to
be in the isolation region and so, by increasing the
damping ratio (ζ), more vibration is transmitted.
So, for practical purposes, the isolators are nor-
mally calculated without damping, using the fol-
lowing formula and some provision to damping is
made afterwards:
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In equations (2) or (3), if there is more than
one forcing frequency, the one to be considered
for the isolator is the smallest value present in the
isolation region, since by increasing its value, the
isolation increases (see Figure 1). The natural
frequency in this case is the isolator natural fre-
quency, where the stiffness is that of the isolator
and the mass is that of the object to be isolated.

Considering now the case when there is a
continuous system, instead of this 1-DOF theory,
there will not be only one, but infinite natural
frequencies for the system. However, by analys-
ing equations (2) or (3) and Figure 1, one can say
that only if the forcing frequency coincides with
one of the natural frequencies of the continuous
system there will be a problem with resonance,
therefore, high transmissibility values. So, one
important point to make here is that, for a con-
tinuous system, transmissibility needs to be con-
sidered only at the forcing frequencies. These are
normally, the harmonics of the turning speed of
the equipment.

2.2 Transfer Function Measurement
The point of this paper is: How to measure

transmissibility? Following equation (1), it can be
concluded that transmissibility can be measured
in the same way as Frequency Response Func-
tions (FRFs) are calculated in Modal Analysis.
However, now, instead of using a force function
as input, both input and output will be response
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functions (due to the forces applied), measured at
different points of the structure. The forcing fre-
quencies to be considered in equation (1) can be
obtained by measuring the spectra values of the
input in any of the available formats as it will be
presented below (i.e., cross or auto spectra).

FRFs are known sometimes as transfer func-
tions [2], in the same way as Transmissibility is.
Transfer functions H(f) describes both the mag-
nitude and phase of the response input as a func-
tion of the input frequency. Therefore, it is a
complex quantity. There are several relationships
governing the process, i.e. [2]:

2.2.1 Fourier transforms:
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2.2.2 Auto Spectral Densities:
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where:

( ) ( ) ( ) ( )2fSfSfSfG aaaaa == (6)

with a used to represent each channel (i.e.,
either x or y) above.

2.2.3 Cross Spectral Densities:
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where:

( ) ( ) ( )fSfSfG yxxy =  and ( ) ( ) ( )fSfSfG xyyx = (9)

a and b represents channels x and y or vice-
versa in equations (7) and (8), respectively.

The relationships (7) and (8) assumes that
there is no noise present in either x(t) or y(t) so
that H1 is equal H2. The transfer function obtained
by equation (5) can only provide the magnitude
information because of the square.

Coherence function should also be computed
as it is a measure of the quality of the input re-
sponse and cross spectral densities, and the cau-
sality of input to response [2], as follows:
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It can be seem that if the signal is noise free,
equation (10) should be 1. If coherence value is
less than one, indicates that the response is not
attributable to the input, due to probably noise or
nonlinearity of the system or unexpected input
signals [2]. Coherence values range from 0 to 1.

Normally, commercial available analysers
compute the H1 estimator, together with γ2

xy,
equations (7) and (10), respectivelly [5].

It can be seem by the above equations that
transmissibility should then be calculated in the
same way as expressed by equation (7):
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In the case of modal analysis, the resonance
frequencies are found by peaks in, at least, some
of the FRFs. With transmissibility, this is not the
case. Frequencies at which the vibration energy is
concentrated are indicated by the cross and auto
spectra used in equation (11). However, when
they are divided by the other, the peaks cancel out
and become flat [6]. So, the forcing frequencies of
interest to be considered in equations (2) or (3)
will be in fact, the frequencies where the trans-
missibility is flat (i.e., the frequencies where co-
herence is maximum), as shown in item 5.

The quantities expressed from equation (4) to
(8) are calculated in the HP35670A analyser
available in the GRAVI (Group of Acoustics and
Vibration) Laboratory according to the type of
average used. The main reason for the results pre-
sented here is linked with that. Depending on the
type of average available, the results are different.
Moreover, can one say that (by analysing equa-
tion (1)) transmissibility is just the ratio of two
measured responses (output to input)?

3. TYPES OF AVERAGES (HP35670A)
In order to evaluate transmissibility, several

functions available in the HP35670A analyser
were tested in order to compare the calculations
performed and to decide with signal processing
function should be used for this case.

Before going to the signal processing calcula-
tions itself, it is necessary to show the types of
averages available. Depending on the type of av-
erage used, the calculations performed to convert
the measured signal from the time to the fre-
quency domain will be completely different.
Next, the average types will be explained.

Averaging and windowing are techniques used
to improve the accuracy of the measurement. Av-
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eraging a measurement reduces the statistical
variance of a measurement with a random excita-
tion function [7].

3.1 Time averaging
According to reference [8], time averaging is

normally used during mechanical applications
measurements to resolve low-level frequency
components from background noise. Although
this time of averaging has a better signal-to-noise
ratio than RMS averaging, there are some restric-
tions: 1) the input signal must be periodic; 2) one
needs to provide a trigger signal. If the trigger is
not provided, the analyser will still makes the
measurement but the amplitude of periodic sig-
nals will diminish with each successive average.

With time averaging, the analyser averages
complex values point by point in the frequency
domain. This process lowers noise because the
real and imaginary components of the random
signals are not in phase and cancel each other.
Frequency components that are not periodic do
not cancel and therefore do not diminish with
successive averages.

This type of averaging was used in this paper
since the transfer function calculated using it is
just the ratio of the response measured by each
channel (see 4.5.2).

3.2 Time exponential averaging
Unlike the linear averaging explained above,

exponential averaging weights new data more
than old data. This is useful for tracking data that
changes over time [8]. For exponential averaging,
the number of averages one selects determines the
weighting of old versus new values (not the total
number of averages one calculates). As one in-
creases the number of averages, new data
weighted less. The formula used in this case is
presented below, with N= weighting factor:
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With exponential averaging, it is important to
set correctly the number of averages. If there are
too few averages, the averaging will not smooth
out variances. However, if there are too many
averages, the analyser may not track subtle
changes occurring with the data [8].

3.3 RMS (Root-mean-square) averaging
RMS averaging is sometimes called “power”

averaging. It is calculated by the square root of

the sum of all values squared, divided by the
number of the measurements (mean). It is a good
technique for determining the average power
level. Because of that, it is the type of default av-
erage normally performed by most vibration ana-
lysers. It averages N time records as follows:
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RMS averaging does not eliminate noise pres-
ent in the signal. In fact, it simply approximates
the actual noise level. By increasing its number, a
better statistical approximation of noise is ob-
tained, although the noise is not actually reduced.

It is available only for power spectrum, cross
spectrum, FRF and coherence calculations. Linear
spectrum and time signals only shows the last
processed time record.

3.4 RMS exponential
This type of average works in the same way as

time exponential averaging, i.e., the new data is
weighted more than the old one. It is useful for
tracking data that changes over time. Until N av-
erages are reached, there is no difference between
RMS exponential and RMS. The number of aver-
ages (N) in this case do not indicate the number of
averages calculated, yet, determines the weighting
of old versus new data. Therefore, by increasing
N, new data is weighted less. The formulation
used in this case is the same as equation (12).

3.5 Peak hold averaging
The peak hold averaging is not strictly an av-

eraging process. It simply gets the maximum peak
at each frequency during each measurement and
assumes that value to be the averaged value.

4. SIGNAL PROCESSING FROM TIME TO
FREQUENCY DOMAIN (HP35670A)

The functions shown in section 2.2 [2, 3] are
calculated by the HP35670A analyser differently
according to the type of average used and shown
in section 3. The main difference between the
formulas presented here and in section 2.2 is the
correction factor for each channel, without each
the analyser does not guarantee the manufacture
values [8]. The available signal processing are:

4.1 Power Spectrum (or Auto Spectra)
This function is sometimes called “Auto

Spectra”. It is used in the HP35670A analyser
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during the calculation of RMS and RMS expo-
nential FRFs and it is computed as:

4.1.1 Average type: off, time or time
exponential – In this case, the equation  used is:

LspecLspeccrtnPspec **= (14)

This function is the same as ones presented by
equations (6) for each channel used, apart from
the correction factor mentioned. Averaging is
used in the above formula during the computation
of the Lspec (Linear Spectrum), as it will be seem
in section 4.3.

4.1.2 Average type: RMS – In this case,
the formula used is:

NLspecLspecsumcrtnPspec /)*(*= (15)

Here, equation (6) is calculated by taking the
averages during the computation of the Pspec
(Power Spectrum).

4.1.3 Average type: RMS exponential –
In this case, the formula used is:

)*(* LspecLspecXavgcrtnPspec = (16)

Xavg in this case is given by equation (12).
The difference here from equation (15) is how
averaging is performed.

4.1.4 Average type: Peak Hold – In this
case, the formula used is:

)*,max(* LspecLspecPspeccrtnPspec = (17)

4.2 Power Spectral Density
The Power Spectral Density (PSD) is a func-

tion which provides power normalised to a 1 Hz
bandwidth [8]. This function is useful for wide-
band, continuous signal. It displays the response
in units squared divided by the equivalent filter
bandwidth. So, PSD is nothing more than the
Pspec values presented from equation (14) to (17)
squared divided by the window bandwidth used.

BW
PspecPSD

2
= (18)

4.3 Linear Spectrum
This function is used during the calculation of

the time or time exponential averaged FRF and it
can be computed as follows:

4.3.1 Average type: off, RMS, RMS ex-
ponential or peak hold – In this case, the
formula used is:

)(* WtimeFFTcrtnLspec = (19)

The calculations performed here are the Sx or
Sy terms used in equation (4), apart from the cor-
rection factor already mentioned.

4.3.2 Average type: time – In this case,
the formula used is:

NWtimeFFTcrtnsumLspec /))(*(= (20)

As for the case of RMS Power Spectrum (eq.
(15)), normal averaging is performed here.

4.3.3 Average type: time exponential –
In this case, the formula used is:

Lspec
N

NWtimeFFTcrtn
N

Lspec *1))(*(1 −+=  (21)

Now, exponential averaging is performed using
equation (12), as presented by equation (21).

4.4 Cross Spectrum
This function is used during the computation

of the FRF curves using RMS averaging and in-
volves the two signals measured, in the following
way:

4.4.1 Average type: off, time or time
exponential – In this case, the formula used is:

yx LspecLspecCspec *= (22)

Equation (22) is the same as equation (9).

4.4.2 Average type: RMS – In this case,
the formula used is:

( )
N

LspecLspecsum
crtncrtnCspec yx

yx

)(*
*)(*= (23)

Equation (23) is the same as equation (9),
apart from the correction factor already men-
tioned. The difference from equation (22) is that
average is taking during the Cspec calculation in
this case.

4.4.3 Average type: RMS exponential –
In this case, the formula used is:

( ))(**)(* yxyx LspecLspecXavgcrtncrtnCspec = (24)
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Xavg in this case is given by equation (12).
The difference here from equation (23) is how
averaging is performed.

4.4.4 Average type: Peak hold - In this
case, no FRF calculation is performed.

4.5 FRF (or transfer function)
As mentioned previously, transmissibility is

obtained experimentally by measuring the Fre-
quency Response Function (FRF) between two
points of the structure, more or less in the same
way FRF curves are obtained during modal test-
ing. Therefore, instead of using the FRF nomen-
clature in this case, it is used the transmissibility
symbol (Tr). Depending on the type of averaging
used during the signal process for the FRF calcu-
lation, different formulations are employed by the
analyser, as shown below. So, the user has to be
aware of that.

4.5.1 Average type: off, RMS or RMS
exponential - the FRF calculation is performed
according to the following equation:

y

yx
yx Pspec

Cspec
Y
XTr ,

, ==  (25)

4.5.2 Average type: time or time expo-
nential - Using this type of average, makes the
calculation:

y

x
yx Lspec

Lspec
Y
XTr ==,

 (26)

4.5.3 Average type: Peak hold - In this
case, no FRF calculation is performed.

4.5.4 FRF calculation final considera-
tions: If one ignores the signal processing per-
formed during the transmissibility calculations
and take only the ratio of two measured signal, it
can be seem by analysing equations (25) and (26)
that, only when the time average is used, the re-
sponse function obtained will be the same as the
mentioned ratio. That is the main objective here.

4.6 Coherence
Coherence is calculated by the HP35670A

analyser as follows:

 
yx PspecPspec

CspecCspecCoeh
*
*= (27)

Comparing equations (27) and (10), they are
the same and are only computed when performing
FRF calculations as presented by equation (25).

5. RESULTS
In order to illustrate the points mentioned pre-

viously, several results will be shown to demon-
strate the care the user has to have during the
measurement of the transfer functions.

A motor operating at 3600 RPM (i.e., 60 Hz),
was employed as the source of vibration. Two
accelerometers were used to obtain the transmis-
sibility of the motor between its structure and its
surrounding surface. So, the output response is
measured by the accelerometer connected to the
surrounding (in this case, a metallic base where
the motor was supported) and the input response
is measured by the accelerometer connected to the
top of the motor (considered the source of vibra-
tion). Both accelerometers were fixed at the same
direction.

Initially, three different measurements were
performed using different types of averages: 1)
time, 2) time exponential and 3) RMS. For each
of the measurements, the response for each accel-
erometer was recorded using the available signal
process options on the HP35670A analyser (as in
equation (1), using the signal processing pre-
sented in items 4.1 and 4.3) and the results ob-
tained from the ratio of the two signals were
compared with the results given by the FRF per-
formed by the analyser (and presented in item
4.5).

Transmissibility (Time Average)
3 different measurements
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Figure 2 – Calculated and measured transmissi-
bilities, 3 different measurements, Time Average

Figure 2 shows the results obtained for the
three measurements using time averaging. It can
be seem that the results obtained from the ratio
and the FRF measurement are the same for each
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one of the measurements. That was expected
when looking at equation (26). However, when
comparing the results obtained from each meas-
urement, the responses vary a lot. The third meas-
urement gave a transmissibility ratio of more than
2 (two) at 300 Hz, indicating an amplification of
the input signal, what may not be true.

When comparing the same type of results but
using time exponential averaging (Figure 3), it is
demonstrated that the results also varied a lot
from one measurement to the next. However, the
computation of the ratio and the FRF produced
the same result, as expected and proved by equa-
tion (26). For the measurements presented in
Figure 3, no amplification was detected. How-
ever, that may not be a conclusion as the time or
time exponential averaging results vary a lot de-
pending on the number of averages performed.
That is an important conclusion.

Transmissibility (Time Exponential Average)
3 different measurements
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Figure 3 – Calculated and measured transmissi-
bilities, 3 different measurements, Time Expo-

nential Average

Transmissibility (RMS Average)
3 different measurements
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Figure 4 – Calculated and measured transmissi-
bilities, 3 different measurements, RMS Average

The results from the ratio and the FRF calcu-
lations proved to be different now when using
RMS averaging as shown in Figure 4. That is also
expected and can be understood by analysing
equation (25). The measured FRF is actually not
the ratio of the two measured channels, yet, the
ratio between the cross to power spectra. The
three different FRF measurements produced ap-
proximately the same results, although the meas-
ured ratios varied a lot. So, the first conclusion to
be drawn is that RMS averaging should be used
for transmissibility measurements.

So, emphasis is given next to the measure-
ments performed using the RMS averaging. As
mentioned in item 2.2, frequencies at which the
vibration energy is concentrated are indicated in
the spectrum of the signal as peaks. Figure 5
shows the Power Spectrum Density (PSD) meas-
ured for each channel demonstrating that for the
motor used, energy is concentrated at 60, 180 and
300Hz. The behaviour shown is the same as that
obtained for the Power Spectrum (not shown),
although for the PSD representation, the energy is
more clearly seem.

Power Spectrum Density (PSD) at each 
measured channel
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Figure 5 – Power Spectrum Density for each
measured channel

Power Spectrum and PSD (Transmissibility)
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Figure 6 – Power Spectrum and Power Spectrum
Density (PSD) Transmissibilities at whole fre-

quency range, RMS averaging, Hanning Window



Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

When transmissibility is calculated as the ratio
of the two measured signals, as also mentioned in
item 2.2, at frequencies where the energy are con-
centrated (as seen in Figure 5), the transmissibil-
ity values cancel out and the plot becomes flat
(see Figure 6). As the other regions are mainly
those with zero values, when they are divided by
each other, the values may be large (i.e., bigger
than 1). However, these values cannot be under-
stood as amplifications of the input signal, due to
noise.

As mentioned in item 2.2, the advantage of
using RMS averaging is that it is possible to ob-
tain the coherence as well, as a check on the
quality of the results. It is only possible to com-
pare results where coherence values are close to
unity, as in the other regions, noise may contami-
nate the quality of the measurements. Moreover,
only when the excitation frequency is within the
range 0 <ω < 2ωn or conversely, when ωn > ω/ 2
 it is possible to have an amplification of the input
signal. So, the results will be analysed only at the
turning speed and its harmonics.

Transmissibility at Harmonics of Turning Speed (60 Hz)
Hanning Window (BW = 1.5s) and RMS Averaging

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

60,00 120,00 180,00 240,00 300,00 360,00

Frequency (Hz)

Tr

FRF 2/1 Measured (Hann) Pspec2/Pspec1 sqrt(PSD2/PSD1)
(Cross2/1)/Pspec1 (Cross2/1)^2/Pspec1^2 Lspec2/Lspec1  
Coherence   2/1

Figure 7 – Transmissibility Functions at Turning
Speed, Hanning window, RMS Averaging

Figure 7 presents the results when comparing
the several calculations possible using the avail-
able measurements. It represents RMS averaging
results for the above case using Hanning Window.
It can be seen by analysing Figure 7 that where
coherence is low, each computation produced a
different result, apart from the PSD and Pspec
computation that are in fact the same. When using
the ratio of the linear spectrum of each channel
produced big values for Tr (i.e., Tr = 1.9 at 240
Hz and Tr = 16.8 at 360 Hz), what may disre-
commend this type of calculation. Nevertheless, it
should be stressed that these frequencies had low

coherence. At all high coherence values, the cal-
culations produced almost the same results.

6. CONCLUSIONS
As it can be concluded from the results pre-

sented previously, transmissibility should be ob-
tained from continuous systems, using RMS aver-
aging. Although it was not shown here, the num-
ber of averages taken during the averaging proc-
ess is important. It should be great in order for the
results to be statistically coherent (around 110
averages). Moreover, only at frequencies where
coherence is close to unity that the results can be
trusted. In this case, it does not really matter if the
calculation is performed as the ratio of the two
measured signals or as the normal FRF calcula-
tion (i.e., using the cross to power spectra).
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